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This paper contains the Hamiltonian theory of a classical particle displaying all the features of the Dirac 
electron (spin, Zitterbewegung, etc.) except, of course, for the superposition principle. The particle is de­
scribed by eight internal canonical variables, of which three are the spin angular momentum vector. The five 
other variables have no simple physical meaning, but are nevertheless necessary for a consistent theory. The 
equations of motion are not manifestly covariant, and the Lorentz invariance of the theory is proved by 
constructing the ten generators of the inhomogeneous Lorentz group. 

1. INTRODUCTION AND NOTATIONS 

EVER since the brilliant success of Dime's electron 
theory, numerous attempts have been made to 

construct classical models of spinning particles.1""12 Most 
of these models were based on the introduction of a few 
internal degrees of freedom, such as an antisymmetric 
spin tensor 5a/S, possibly subject to some constraints 
such as 5a%!3=0. None of these attempts, however, was 
really satisfactory, because each model could reproduce 
faithfully only part of the features of the Dirac electron. 

In the present paper, we show that a satisfactory 
classical model for spinning particles requires the intro­
duction of eight internal independent dynamical vari­
ables. Three of them are the components of the spin 
angular momentum. The five other variables have no 
simple physical meaning, but are nevertheless necessary 
for a consistent theory. 

Our method is so straightforward as to be almost 
foolproof. We simply "dequantize" the Dirac equation 
by replacing Hermitian operators by real classical 
variables, and their commutators by Poisson brackets: 

[u,v]/i —» (u,v). (i) 

This is done explicitly in Sec. 2. The classical equations 
of motion are derived in Sec. 3, and their Lorentz 
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invariance is proved in Sec. 4. Finally, an Appendix is 
devoted to an alternative set of equations of motion. The 
latter are manifestly covariant (the proper time appears 
explicitly) but they are not a faithful model for the 
Dirac electron. The difficulty seems to be inherent in the 
manifest covariance itself. 

Throughout this paper, lower case latin indices run 
from 1 to 3, Greek indices run from 0 to 3, and capital 
latin indices run from 1 to N (the number of canonical 
variables). A comma denotes partial differentiation. 
Natural units (h=c=l) and the Einstein summation 
convention are used throughout. 

2. THE DYNAMICAL VARIABLES 

The Dirac Hamiltonian is 

H=a-(p—eA)+Ptn+ecf), (2) 

where <j> and A are functions of the time / and the 
coordinates qiy whose Poisson brackets with the mo­
menta pj are 

(qi,pj) = dij, (3) 

as is well known. 
The am and p are internal dynamical variables. In 

quantum theory, these are Hermitian operators, whose 
commutators can be written as 

and 
(4) 

(5) 

where emnr is the Levi-Civita alternating symbol, and 
where a factor 4 has been added for convenience. Here, 
S and T are also Hermitian operators, linearly inde­
pendent from a and £. However, any further commu­
tator between a, 0, S, and T again leads to one of these 
operators (a, /?, S, and T form a Lie algebra) so that one 
does not need any further dynamical variables to 
describe the Dirac electron. 

In the classical theory, we have, instead of (4) and (5), 

and 
(<W?) = 4r w . (7) 

We likewise obtain, by analogy with the quantum 
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commutation relations, 

\ V m p n) &mnr>S r > 

\-L TOJ-^ n) ^mnr^ry 

\(Xm,0 n) ~ ^mnrOlr > 

l ^ m j - ' n) &mnrJ- i j 

yl my&n) = = OmnP > 

(P,sm)=o, 
(fi,Tm) = am. 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Finally, we note that a, /?, S, and T have vanishing 
Poisson brackets with q and p. 

An important property of Eqs. (6)-(14) is that the 
corresponding commutation relations hold for any value 
of the spin whatever13 and not only for spin-\ particles.14 

To specify the spin, in quantum theory, we further need 
anticommutation relations such as awaw+ancew= 28mn, or 
the Duffin-Kemmer relations, etc., which have no 
classical analog within the frame of the present theory 
where a, /?, S, and T are c numbers. Indeed, it is quite 
natural that, in a classical theory, the intrinsic angular 
momentum may take any real value. It thus appears 
that there is only a single classical analog to all the 
various quantum representations of the Lorentz group, 
corresponding to spins 0, J, 1, • • •. It is discussed in 
Sec. 4. 

The Poisson bracket of any two functions u and v is 
now defined as15-17 

(u,v) = (du/dyA)eAB(dv/dyB), (15) 

where yA stands for any of the basic variables q, p, a, P, 
S, and T, and where 

eAB==_eBA==(yAy^ ( 1 6 ) 

It is readily shown that Poisson brackets, as defined by 
(15), satisfy the usual identities15 

(«,»)=-(v,«), (17) 

(u+v, w) = (u,w)-\- (v,w), (18) 

(uv,w) = (u7w)v-\-u(v,w). (19) 

However, the Jacobi identity further requires that17 

eA[BeCD]AZ=0j (20) 

where brackets denote, as usual, total antisymmetriza-
tion. In our case, it is not even necessary to check that 
our eAB, as given by Eqs. (6) to (14), indeed satisfy (20), 
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because we already know that the quantum variables 
a, j8, S, and T form a Lie algebra.18,19 

The elementary definition of Poisson brackets is 
recovered in the special case where eAB=zLl if A — B 
dz^N, and otherwise eAB=0. The present definition is 
much more general, since it allows arbitrary "coordi­
nate" transformations in phase space 

yA = yA(zM). (21) 

Poisson brackets remain invariant under such trans­
formations provided that 

eAB=eMNzA
tMzB,N, (22) 

i.e., eAB must transform as an antisymmetric contra-
variant tensor in phase space. (In the elementary 
formulation, only canonical transformations were al­
lowed, namely, those which did not alter the values ± 1, 
0 of eAB.) For instance, one can choose as basic variables 
the gauge-invariant P= p— eA, with Poisson brackets 

(Pm,Pn) = eFmn, (23) 

which satisfy (20) provided that the Maxwell equation 
divB=0 holds.20 

[JSfote added in proof. Finally, we note that in the 
present classical theory, only eight of the internal vari­
ables a, /3, S, and T should be considered as dynami­
cally independent, because the combinations a2+/52 

+4S2+4T2 and [(«xT)+iSS]2+(a-S)2+4(S.T)2 have 
vanishing Poisson brackets with all the dynamical vari­
ables. These expressions should therefore be considered 
here as mere numerical coefficients, like m or e. There are 
no further independent combinations of this kind, be­
cause the eAB matrix is of rank eight. (These results are 
due to Micha Hofri, to whom we are very much indebted 
for kindly carrying out these tedious calculations.)] 

3. EQUATIONS OF MOTION 

The equations of motion are given by17 

(du/dt) = (du/dt)+ {ufl), (24) 

where, in our case, 

H=a-F+Pni+e<t>. (25) 

With the help of Eqs. (6) to (14) and Eq. (23), we 
readily obtain 

dq/dt=a, (26) 

dP/dt=e(E+axB), (27) 

d«/*=-4(SxP)+4mT, (28) 

18 G. Racah, Suppl. Nuovo Cimento 14, 67 (1959). 
19 T. F. Jordan and E. C. G. Sudarshan, Rev. Mod. Phys. 33, 515 
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dj8/<ft=-4T-P, (29) 

< / S / # = - ( a x P ) , (30) 

dT/dt=l3F-ma. (31) 

In the case of a free particle ( E = B = 0 ) , we have 
p = const, and Eqs. (28) to (31) are easily integrated: 

<x=(H/E2)p+Z, (32) 

0 = (mH/E2)- (Z-p/m), (33) 

S = S 0 + ( p x Z 0 , (34) 

T = ( S 0 ) c p / m ) - [ m Z / + ( Z / . p ) ( p / W ) ] , (35) 

where Z is the Zitterbewegung vector 

Z = Ci sin2E/+C2 cos2£/, (36) 
and 

Z '= ( - C i cos2£*+C2 sin2Et)/2E. (37) 

Here, So, Ci, C2, and # are ten arbitrary constants, and 
E is defined by 

E=(f+m2)ll2. (38) 

Note that L + S and S«p are constants of the motion 
for a free particle. Note also that there are no limitations 
on Ci and C2, in contradistinction with the situation in 
quantum mechanics. In the classical theory, both can be 
zero (no Zitterbewegung) or can be made such that 
I dq/dt I is larger than the velocity of light. This implies 
that q cannot be considered as the position of the 
particle. 

Indeed, we know from the work of Foldy and 
Wouthuysen21 that the position operator of a free Dirac 
electron is given by 

X = q - [ S x p / £ ( E + m ) ] + ( T / E ) 

- C ( T . p ) p / £ ? ( £ + f » ) ] . (39) 

[The classical analog of the Foldy-Wouthuysen trans­
formation simply is a phase space transformation, like 
Eq. (21), such that p' = p, 0' = (a-p+/3f»)/jB, etc., 
whence H'—H—ftEJ] In the present theory, X becomes 
a classical variable, with Poisson brackets 

(Xm,Xn) = 0, (40) 

(Xm,pn) = 8mn, (41) 

(Xm,H) = pmH/EK (42) 

From the last equation, it follows that the square of 
the velocity 

(dX/dt)2= (p2/E2) (H2/E2) (43) 

tends towards (H/E)2 when p2/m2 —» 00. Now, in Dirac's 
original theory, we have H2=E2, so that the velocity of 
the particle approaches the velocity of light, as expected. 
However, in our case, nothing seems to prevent us from 
giving different values to the constants of motion H 

2 1L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950). 

and E. Fortunately, this difficulty is only apparent and 
it is removed in the next section. 

4. LORENTZ INVARIANCE 

The equations of motion (26) to (31) are manifestly 
invariant under spatial rotations, but not under Lorentz 
transformations. In order to prove their invariance, we 
now try to construct the generators Pa and M&y of the 
inhomogeneous Lorentz group, satisfying22 

(P«,P,) = 0 , (44) 

(Ma8,Py) = gayPa-gPyPa , (45) 

(MafiMy9) = i*yM0l — gfiyMat+gaiMvfi--g(idMya, ( 4 6 ) 

with 

Po^H. (47) 

For the other generators, we guess23 

Pm=pm, (48) 

M0r=HXr-tPr, (49) 

Mrs = PrXs-PsXr, (50) 

where pm and Xm are actually — p and —X, because of 
the use, in this section, of the Minkowski metric goo= 1 
and other gas= —dap. 

Straightforward calculations, making use of Eqs. (18), 
(19), (40), (41), and (42) readily show that Pm and Mrs 

have correct Poisson brackets with all the generators, 
but that 

(Mor,Po) = Pr(H2/E2), (51) 

and 

(Mor,Mos) = Mrs(H
2/E2). ( 5 2 ) 

Again we find the redundant factor H2/E2, which is 
identically one in quantum mechanics, but not in the 
present classical theory. We are therefore led to the 
conclusion that not all the solutions of the dynamical 
equation (24) are Lorentz invariant, but only those for 
which the constants of the motion H2 and E2 are equal. 
This removes the difficulty mentioned at the end of the 
previous section, and proves the consistency of the 
theory. 

APPENDIX 

The reader may perhaps wonder why we have not 
started from a manifestly covariant generalization of 
(24), such as24 

(du/ds)=(u,H), (53) 

where H is a relativistic scalar, e.g., 

H=y«Pa. (54) 

22 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949). 
23 L. L. Foldy, Phys. Rev. 102, 568 (1956). 
24 A. Peres and N. Rosen, Nuovo Cimento 18, 664 (1960). 
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The internal dynamical variables would be ya and Safi
y 

with 

(7«,V9 = 4S<*, (55) 

(S«*,78) = ga*yp- g^ya, (56) 

(S<*eysvd) = g « ^ 5 - g^S*5 - g«*£07+g**s«7. (57) 

The equations of motion would be 

dxa/ds=ya, (58) 

dPa/ds=eFafiye, (59) 

dya/ds=4SaPPp, (60) 

dS^/ds=Pay^-P^ya. (61) 

We see from (58) that <fo is an invariant parameter 

I. INTRODUCTION 

IF the octet version1 of the higher symmetry scheme 
based on the group SUz were exact, the known 

particles and resonances would form degenerate multi-
plets.2 This degeneracy is not present in nature. How­
ever, it has been supposed that the deviations from the 
exact symmetry are due to some symmetry-breaking 
interactions which can be regarded as perturbations. 
Although no deep understanding of the symmetry-
breaking interactions has been advanced, some results 
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and further references, see L. Alvarez, M. Alston, M. Ferro-Luzzi, 
D. Huwe, G. Kalbfleisch, D. Miller, J. Murray, A. Rosenfeld, 
J. Shafer, F. Solmitz, and S. Woiciciki, Phys. Rev. Letters 10, 
184 (1963). 

related to the proper time dd by 

(d$/ds)*=y°ya. (62) 

Note that there are no constraints in this theory. 
It is not difficult to solve these equations explicitly in 

the case of a free particle, and it is found that the 
Zitterbewegung is not of the same type as in the original 
Dirac particle. Namely, not only q, but also t oscillates 
periodically as a function of s, so that (dq/dt) is not a 
sinusoidal function. It follows that this manifestly 
covariant system of equations is not a faithful model of 
the Dirac electron. 

One may still ask whether the correct equations of 
motion (26) to (31) can be recast into a manifestly 
covariant form, with the proper time as an evolution 
parameter. In our opinion, this should not be possible, 
because Eqs. (26)-(31) have spurious solutions which 
are not Lorentz-invariant, and it is difficult to see how 
this could happen if they were equivalent to manifestly 
covariant equations. 

have been obtained which follow simply from the 
postulated transformation properties of the symmetry-
breaking interactions. For example, Okubo3 has ob­
tained a "mass formula" by assuming the mass split­
tings transform like the hypercharge component of an 
octet. Similarly, the symmetry-breaking effects of the 
electromagnetic current have been considered by 
various authors4 for the eight-dimensional multiplets. 

In the present work we derive a concise expression 
for the most general form of the electromagnetic 
interaction in any representation of SUz. The results 
derived previously for octets and their generalizations 
to arbitrary multiplets follow immediately from our 
formula. These results consist of relations between 
various electromagnetic form factors, mass splittings, 

3 S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962); and 
Phys. Rev. Letters 4, 14 (1963). 

4 S. Coleman and S. Glashow, Phys. Rev. Letters 6, 423 (1961), 
N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872 (1961); and 
S. Okubo, Ref. 3. 
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The general form of the electromagnetic interaction in the octet version of the proposed "higher sym­
metry' ' scheme based on the group SUZ is derived. The result, which is applicable to an arbitrary multiplet, 
is expressed in an especially simple form by introducing the notion of U spin. Relations among electro­
magnetic form factors, mass splittings, decay amplitudes, and scattering amplitudes, previously obtained 
by various authors in the case of octets, are shown to follow immediately, as well as their generalizations to 
arbitrary multiplets. Where possible, comparisons are made with experiment. 


